
Database like stream processing
with ksqlDB

Presenter
Timot Tarjani
Lead Software Engineer

1. Recap

2. Schema Registry

3. ksqlDB

4. Examples

Agenda

DB

DB

Recap - Event Driven Architecture

Microservice

U
I

REST API Source
Connector

Microservice

Microservice

A
PI G

atew
ay

DB

JD
B

C
 Sink

C
onnector

ksqlDB

schema
registry

Recap - Kafka Architecture

Kafka Cluster

Broker

Topic

Partitions

Partitions

Partitions

Broker

Topic

Partitions

Partitions

Partitions

Broker

Topic

Partitions

Partitions

Partitions

Producer

Consumer

Producer

Consumer

Producer

Consumer

Recap - Kafka Streams Processor Topology

A processor topology or simply topology defines the
computational logic of the data processing that needs to be
performed by a stream processing application.

A topology is a graph of stream processors (nodes) that are
connected by streams (edges). Developers can define
topologies either via the low-level Processor API or via the
Kafka Streams DSL, which builds on top of the former.

1. Source
2. Stream Node 1
3. Stream Node 2
4. Sink

Stream Partition –> Kafka Topic Partition

Source Source

Node Node

Node

Sink

Relation between Kafka, ksqlDB and SchemaRegistry

ksqlDB

storage

computation

ksqlDB
schema
registry

computation

Schema Registry

Schema Registry is a distributed storage layer for schemas which uses Kafka as its underlying storage
mechanism. Some key design decisions:

● Assigns globally unique ID to each registered schema. Allocated IDs are guaranteed to be
monotonically increasing and unique, but not necessarily consecutive.

● Kafka provides the durable backend, and functions as a write-ahead changelog for the state of
Schema Registry and the schemas it contains.

● Schema Registry is designed to be distributed, with single-primary architecture, and ZooKeeper/Kafka
coordinates primary election (based on the configuration).

● Supported formats:
○ JSON Schema
○ Protobuf
○ Avro

ksqlDB

Schema Registry

Schema Registry

Kafka Streams

Kafka Connect

Simple
producer/consumer

application

Specific serializer and deserializer needed for the producer
and consumer which is aware of the schema registry eg:
CachedSchemaRegistryClient

ksqlDB

Schema Registry

Schema Registry

Kafka Streams

Kafka Connect

Simple
producer/consumer

application

Specific serializer and deserializer needed for the producer
and consumer which is aware of the schema registry eg:
CachedSchemaRegistryClient Clients written in

other languages

ksqlDB

Schema Registry

Schema Registry

Kafka Streams

Kafka Connect

Simple
producer/consumer

application

Specific serializer and deserializer needed for the producer
and consumer which is aware of the schema registry eg:
CachedSchemaRegistryClient Clients written in

other languages

Client ignoring
schema registry

KSQLDB

ksqlDB is a database that's purpose-built for stream processing applications.

It consolidates the many components found in virtually every stream processing architecture.

ksqlDB aims to provide one mental model for doing everything you need. You can build a complete streaming app
against ksqlDB, which in turn has just one dependency: Apache Kafka.

ksqlDB

Kafka Streams vs ksqlDB

Kafka Streams

Simple
producer/consumer

ksqlDB is actually a Kafka Streams
application, meaning that ksqlDB is a
completely different product with different
capabilities, but uses Kafka Streams
internally. Hence, there are both similarities
and differences.

ksqlDB: actual service
Kafka Streams: client library

Key concepts: Streams & Tables

Stream-Table duality:
Essentially, this means that a stream can be viewed as a table, and a table can be viewed as a stream.

STREAM

Stateless

Insert

Aggregate: sum

Produce records

TABLE

Stateful

Update by key

Aggregate: replace

Materialized

KEY and PRIMARY KEY

STREAM TABLE

Key column type KEY PRIMARY KEY

NULLABLE key YES messages with NULL
PRIMARY KEY are ignored

UNIQUE KEY NO YES - existing message with
same KEY replaced

Tombstones NO - messages with null
value are ignored

YES - existing message with
same KEY deleted

Push and Pull queries with Windows

Window

● HOPPING window

● TUMBLING window

● SESSION window

● !SLIDING window

● WITHIN and GRACE
PERIOD

Pull

● “Snapshot”

● NOT PERSISTED

Push

● “RealTime”

● NOT PERSISTED

● EMIT CHANGES
○ Continous

● EMIT FINAL
○ End of the window

SELECT STATEMENTS

https://docs.ksqldb.io/en/latest/developer-guide/ksqldb-reference/select-push-query/#tumbling-window
https://docs.ksqldb.io/en/latest/developer-guide/ksqldb-reference/select-push-query/#session-window
https://docs.ksqldb.io/en/latest/developer-guide/ksqldb-reference/select-push-query/#within-and-grace-period
https://docs.ksqldb.io/en/latest/developer-guide/ksqldb-reference/select-push-query/#within-and-grace-period

Stream time

Scenario: Event time added by producer

Out-of-order: event-time < stream-time

stream time

18:20 18:21 18:22 18:23 18:23 18:25 18:27 18:28

18:20 18:21 18:22 18:23 18:20 18:25 18:21 18:27 18:28

event time

18:25

Solution: grace period

Time window Grace period

EMIT CHANGES

EMIT FINAL

Stream and Table Joins

A join operation merges two input streams and/or tables based on the keys of their data records, and yields a new
stream/table.

Primary Secondary Inner Join Left Join Outer Join Result

KStream KStream supported supported supported new topic

KTable KTable supported supported supported new table

KStream KTable supported supported - new topic

KStream Global KTabe supported supported - new topic

ksqlDB - Tooling

● UDF - User defined functions
○ functions written in Java and added to Kafka as a “plugin”

● REST API
○ /query REST Endpoint to manipulate the “database”

● ksqlDB CLI
○ command line tool

● Java client library

● Embedded Connect Platform
○ Connectors for systems which does not have producer or consumer
○ runs connectors on itself

● Ecosystem setup: Schema Registry, ksqlDB

● Java - Spring Boot project setup

○ kafka-streams

● Demo

Show me the code!

Want to learn more?

● Kafka Connect

● SpringFlo

● Spring Cloud libraries

● https://kafka.apache.org/quickstart

● https://github.com/ttimot24/webinar-kafka-demo

https://kafka.apache.org/quickstart
https://github.com/ttimot24/webinar-kafka-demo

Questions & Answers

