
CONFIDENTIAL. Copyright © 1

2 0 2 2

Increase the efficiency
of test automation

CONFIDENTIAL. Copyright © 2

Business growing at XY company

XY Company

• E-Commerce company
• HQ: Hungary, Budapest
• Monthly visitors: 1,4 million
• Avg Visit Duration: 00:04:21
• Annual Revenue: ~ 10M EUR
• Countries where available: 8

• Monthly visitors: 5+ million
• Avg Visit Duration: 5+ minutes
• Annual Revenue: 50+ M EUR
• Countries where available: 30+
• Shorter time to market
• Phase1: New flexible webshop
• Phase2: New Mobile App
• Better performance / more secured

Mid term
(~2 years)

„Selling with pleasure”

Long term
(~5 years)

• Monthly visitors: 30+ million
• Avg Visit Duration: 6+ minutes
• Annual Revenue: Up to 200M EUR
• Countries where available: 80+
• Top 5 E-Commerce in Europe

CONFIDENTIAL. Copyright © 3

Architecture upgrade

Data
Access
Layer

Business
Logic
Layer

User
Interface

Monolith

Microservice

Api
Gateway

Micro-
service

Micro-
service

Micro-
serviceMicro-

service

Micro-
service

Microservice architecture Pro:
• Independency in

technology/changes/during
operation/scaling

• Small size, easy to manage/start
up/onboard new team member

Microservice architecture Cons:
• More complex to manage

architecture/deployment/testing/
debugging

• More network usage and less
secured due to network
communication

Webshop Mobile

CONFIDENTIAL. Copyright © 4

DevOps is a key to reach business goals with the architecture upgrade

Release Deploy

Monitor

Opearate

Plan
Code

Build

Test

OPSDEV

DevOps is a combination of tools,
practicies, philosophies which aims to
deliver softwares with shorten SDLC,
high quality, continous frequent
deliveries.

DevOps is the key how to manage
Microservice architectures through
Buildservers and/or clouds.

Automating builds, tests, processes, reports, report evaulations
by using various tools, plugins in BuildServers.

CONFIDENTIAL. Copyright © 5

Toolset and testing pyramid

Unit Tests

Integration

E2E

Manual
Tests

Number of tests

❑ Fast
❑ Cheap
❑ Simple

❑ Slow
❑ Expensive
❑ Complex

CICD

Monitoring

Static code
analysis

Performance test

Security test

CONFIDENTIAL. Copyright © 6

Facing reality

New webshop

6 months

New Mobile App

1 year

First Large release

1,5 year

Second Large release

2 year

• Succesful release
• 20 micro services are in

place
• Mobile developement in

place
• Monthly visitors reaches

2,4 Million at the first
month!

• Webshop releases with
various quality

• 30+ micro services
• Mobile App release went to

PROD (2. time only)
• 5+ Million visitors on

Webshop >> more revenue
• Webshop Prod problems

• Poor Mobile App Rating
• Qualtiy and performance

problems with Webshop
• Problems with realeasing
• 2 months shift was need for

the next release
• Extra cost to reduce backlog

• New features received
NOGO for Prod

• Less than 4 minutes page
visit time

• PROD Stability problems
• 1 month to fix PROD issues

and finish current release
• 6 month to finish Phase1

CONFIDENTIAL. Copyright © 7

Assesment on Test Automation

Audit teams start to examine how to reach the target

Problem to solve by our imagined assessment team:

Improve the efficiency of test automation.

(There are other assessment teams to improve Testing, Process management, Devlopment processess, Security, etc...)

Better product
quality

Shorter time to
market

Increased test
automation

coverageCost optimization

Some possible Benefits after
assessment on Test Automation

Optimized automated
test executions

Test case priorizationLess developement
time to create new test

cases

Improved
quality gates

More defects found by
test automation

CONFIDENTIAL. Copyright © 8

Improve test executions on environment level

Current state

Test Environments

DEV FAT SIT UAT Staging PROD

Local
(only devs)

Isoleted Env for
component tests

Integrated Env for
System integrated
tests

Integrated Env for
Acceptance tets

Same version as
PROD

Production

Improvement

Test automation is part of DoD

❑ Automated API tests are on FAT, SIT

❑ Automated UI tests are performed on UAT

❑ Automated Mobile tests are performed on UAT

❑ Performance tests are performed on UAT

❑ There are no other automated test cases

✓ Start automated tests in earlier stages and create smoke/sanity tests

➢ Dev:
Do contract tests
➢ FAT: +Include
API + UI Automated component tests, Performance tests
➢ SIT:
Automated E2E UI Regression sets to be added
➢ UAT, Staging:
Both API/UI/Performance: Smoke test sets, Sanity tests
➢ PROD:
Both API/UI: Smoke test sets, Sanity tests

CONFIDENTIAL. Copyright © 9CONFIDENTIAL. Copyright © 9

Speed up test executions

Recommendations

ImpactFindings

• The following automated test cases are in place:
o API: 2000+ test cases

o 3-5 hours run time
o UI: 500+ test cases

o 3-6 hours run time
o Mobile UI: 300+ test cases

o 2-3 hours run time
• Requirement coverage is up to 95% in all Automated

test cases
• All Test automation integrated into CI
• BDD is in place!

• Tags are partially set but not used.
• Parallel test execution is in place but makes tests

more instabil.

• Smoke test sets/Sanity test sets are not in place
• Automated tests cannot give back an immediate

feedback about product quality
• Manual test engineers needs to do smoke/critical

regression tests manually
• Tests are executed during nights only

• Include at least each of the following tags for the
different test automation types:
• Regression, Smoke, Sanity

• Analyse maximum threads for parallel execution

• See how to improve stability on the next page →→→

CONFIDENTIAL. Copyright © 10

Test Run stability

Current state Improvement

Different reasons beyond Flaky tests:

1. Contract changes ~ 30%

2. Unexpected deployments on Integrated

environment ~ 20%

3. Test data is changed/deleted. ~ 10%

(Anyone can use any test data on the system)

4. Slow application can cause timeouts ~ 30%

5. Overcomplicated/not defnied test cases ~ 10%

Possible solutions to reduce flaky tests

1. Use „Pact” contract test on DEV level

2. Stabilise release management by setting

processess, define roles who and when can do it

3. Improve test data management to have isolated

test data for the different test sets and improve

test data maintenance. (Eg: Each team maintain

their test data)

4. Improve performance engineering → „slide 13”

5. Mute overcomplicated tests untill have time to

simplify

CONFIDENTIAL. Copyright © 11CONFIDENTIAL. Copyright © 11

Test prioritization

Recommendations

ImpactFindings

• Production data is not used in testing
• Most common test data combinations are not identified!

API (RestAssured):
• API coverage is not measured!
• Only 6/20 of most common API combinations are covered!
• There are no test cases for 48% of all API combinations!

Webshop(Selenium):
• 59% of the users use Webshop from Mobile browsers.

(No Automated test for webshop in Mobile Browser)
Mobil App (Appium)
• Mobile Project is in Firebase but crashlytics statistics are missed!

URI Method Status code Appearances
/api/Testing/SampleRequest GET 200 14596

401 897
POST 200 2435

• Not using production statistics can lead to miss critical
scenarios

• Using only requirement coverage metric can show false
results

• Complete scenarios can be missed. (Webshop from
mobile, see API coverage)

• Smoke tests are not efficient without correct prioirty

• Analyse/use production data regularly

Low-hanging fruit:
• Use better test data
• Increase API coverage with common, missed combinations
• Use crashlytics for mobile automation

Mid-long term goal:
• Start develop Mobile tests for webshop. Untill that more

manual testing effort is needed!

CONFIDENTIAL. Copyright © 12

Increase test stability, time spent on analysis

Pass rate
60%

Env bug
20%

Pass rate
77%

Env bug
2%

1 month with
report portal

AI Powered Open-Source test automation dashboard

➢ Manage all your automation results and reports in one place

➢ Make automation results analysis actionable & collaborative

➢ Establish fast traceability with defect management

➢ Accelerate routine results analysis

➢ Visualize metrics and analytics

➢ Make smarter decisions together

Key features with benefits:

✓ Auto-analysis greatly decrease time spent on result analysis

✓ Full test automation health visibiltiy

✓ Test execution results are accessible in real time an no need to wait until finish!

✓ Ability to submit and open defects directly in JIRA for failed tests

From: https://reportportal.io/

CONFIDENTIAL. Copyright © 13

Test automation team runs performance tests

Current State

• Test automation needs to run performance test scenarios

• Non-Functional Requirements are not presented

• Production data is not analysed →

• Load profile is not identified

• Test vs PROD HW ratio is not identified

• Most common test data and business flows are not identified

• Performance tests are performed on irregular basis only on

UAT

• Performance scripts are outdated

• Only backend is measured!

• Logs are not analysed for performance test executions

• Test execution slowness due to poo performance

Start performance engineering

• Identify load profile, HW, most common

test data, business flows

• Collect NFR’s

• Start clientside measures

• Make it regular and start in earlier stage

• Identify Test vs PROD ratios....

→→→→→→→→

• Make performance tests as DoD

Process Speed up → getcarrier.io
• Easy to rollout, start and understand
• Report-portal integration

CONFIDENTIAL. Copyright © 14

Improved Quality Gates

PROD*StagingUATSITFATDEV

Automated
❑ Build
❑ Deploy
❑ Artifact publish
❑ API: New feature

+ Smoke
❑ UI, Mobile:

Smoke test
❑ Performance

Component test
Manual
❑ UI, Mobile: New

feature test
❑ Walkthrough

review

Automated
❑ Build
❑ Deploy
❑ Unit tests
❑ Contract tests
❑ Static code

analysis
❑ Static security

tests
Manual
❑ Peer Review
❑ Dev test

Automated
❑ API, UI, Mobile:

Regression
❑ Integrated

Performance tests
Manual
❑ UI, Mobile: New

feature test
❑ Monitoring
❑ Build

Automated
❑ API, UI, Mobile:

Smoke, sanity
❑ Integrated

Performance
sanity tests

Manual
❑ UI, Mobile:

Acceptance test
❑ Security tests
❑ Monitoring
❑ Build

*Staging environment is not part of the delivery pipeline and used for PROD tickets

Automated
❑ Health check
Manual
❑ UI, Mobile:

Acceptance test
❑ Security tests
❑ Monitoring
❑ Build

Automated
❑ Health check
❑ API,UI, Mobile:
Smoke + Sanity
❑ Static code

analysis
Manual
❑ UI, Mobile:

Acceptance test
❑ Security tests
❑ Monitoring
❑ Build
❑ Walkthrough

review

CONFIDENTIAL. Copyright © 15

Current state after 2 years

XY Company

• Monthly visitors: 8+ million
• Avg Visit Duration: 4- minutes
• Annual Revenue: 72 M EUR
• Countries where available: 41
• Time to market is better, but not with

expected quality
• Phase1: New flexible webshop
• Phase2: New Mobile App
• Worse stability/response times
• More secured (No security issues)

„Selling with pleasure”

After 2 years
developement

Focusing on next 3
years

1 month to fix
issues

2 years expectations:
• Monthly visitors: 5+ million
• Avg Visit Duration: 5+ minutes
• Annual Revenue: 50+ M EUR
• Countries where available: 30+
• Shorter time to market
• Phase1: New flexible webshop
• Phase2: New Mobile App
• Better performance / more

secured

CONFIDENTIAL. Copyright © 16

Roadmap

6 month to finish Phas11 month to fix issues/finish release

Assign Max dev capacity

Implement report portal

Onboard performance engineer
Solve low hanging perf issues

Use PROD data

Dev: contract testing

There is another version from the other assessments. It contains test automation only.

Improve test coverage

Create smoke/sanity test sets

Identifiy NFR’s, create all performance tests...

Improve test stabiltiy

Improve qualtiy gates

CONFIDENTIAL. Copyright © 17

Q&A

INCREASE THE EFFICIENCY OF TEST

AUTOMATION

CONFIDENTIAL. Copyright © 18

Thank you!
For more information contact

Adam Toth
Lead Software Test Automation Engineer

Adam_Toth5@epam.com

Budapest

Bókay János street 44

1083

CONFIDENTIAL. Copyright © 19

Appendix

Tools in the testing pyramid:
• Appium: https://appium.io/
• Selenium: https://www.selenium.dev/
• Cucumber: https://cucumber.io/
• RestAssured: https://rest-assured.io/
• Mockito: https://site.mockito.org/
• Junit5: https://junit.org/junit5/
• Jest: https://jestjs.io/
• DbVisualiser: https://jestjs.io/
• Jenkins: https://www.jenkins.io/
• Splunk: https://www.splunk.com/
• SonarQube: https://www.sonarqube.org/
• Jmeter: https://jmeter.apache.org/
• Wireshark: https://www.wireshark.org/
• Report portal: https://reportportal.io/
• Carrier: https://getcarrier.io/#about
• Contract testing: https://docs.pact.io/

https://appium.io/
https://www.selenium.dev/
https://cucumber.io/
https://rest-assured.io/
https://site.mockito.org/
https://junit.org/junit5/
https://jestjs.io/
https://jestjs.io/
https://www.jenkins.io/
https://www.splunk.com/
https://www.sonarqube.org/
https://jmeter.apache.org/
https://www.wireshark.org/
https://reportportal.io/
https://getcarrier.io/#about
https://docs.pact.io/

